Обеспечение надёжности систем охватывает самые различные аспекты человеческой деятельности. Надёжность является одной из

важнейших характеристик, учитываемых на этапах разработки, проектирования и эксплуатации самых различных технических систем.

С развитием и усложнением техники углубилась и развилась проблема её надёжности. Изучение причин, вызывающих отказы объектов, определение закономерностей, которым они подчиняются, разработка метода проверки надёжности изделий и способов контроля надёжности, методов расчётов и испытаний, изыскание путей и средств повышения надёжности – являются предметом исследований надёжности.

Если в результате анализа требуется определить параметры, характе- ризующие безопасность, необходимо в дополнение к отказам оборудования и нарушениям работоспособности системы рассмотреть возможность повреждений самого оборудования или вызываемых ими других повреждений. Если на этой стадии анализа безопасности предполагается возможность отказов в системе, то проводится анализ риска для того, чтобы определить последствия отказов в смысле ущерба, наносимого оборудованию, и последствий для людей, находящихся вблизи него.

Наука о надёжности является комплексной наукой и развивается в тесном взаимодействии с другими науками, такими как физика, химия, математика и др., что особенно наглядно проявляется при определении надёжности систем большого масштаба и сложности.

При изучении вопросов надёжности рассматривают самые разнообразные объекты – изделия, сооружения, системы с их подсистемами. Надёжность изделия зависит от надёжности его элементов, и чем выше их надёжность, тем выше надёжность всего изделия.

Надёжность – свойство объекта сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, хранения и транспортирования. Недостаточная надёжность объекта приводит к огромным затратам на его ремонт, простою машин, прекращению снабжения населения электроэнергией, водой, газом, транспортными средствами, невыполнению ответственных задач, иногда к авариям, связанным с большими экономическими потерями, разрушением крупных объектов и с человеческими жертва- ми. Чем меньше надёжность машин, тем большие партии их приходится изготовлять, что приводит к перерасходу металла, росту производственных мощностей, завышению расходов на ремонт и эксплуатацию.

Надёжность объекта является комплексным свойством, её оценивают по четырём показателям – безотказности, долговечности, ремонтопригодности и сохраняемости или по сочетанию этих свойств.

Безотказность – свойство объекта сохранять работоспособность не- прерывно в течение некоторого времени или некоторой наработки. Это свойство особенно важно для машин, отказ в работе которых связан с опасностью для жизни людей. Безотказность свойственна объекту в любом из возможных режимов его существования, в том числе при хранении и транспортировке.

Долговечность – свойство объекта сохранять работоспособное со- стояние до наступления предельного состояния при установленной системе технического обслуживания и ремонта.

 

Показатели безотказности:

- вероятность безотказной работы – вероятность того, что в пределах заданной наработки отказ объекта не возникает;

- средняя наработка до отказа – математическое ожидание наработки объекта до первого отказа;

- средняя наработка на отказ – отношение суммарной наработки восстанавливаемого объекта к математическому ожиданию числа его отказов в течение этой наработки;

- интенсивность отказов – условная плотность вероятности возникновения отказа объекта, определяемая при условии, что до рассматриваемого момента времени отказ не возник. Этот показатель относится к невосстанавливаемым изделиям.

 

Показатели долговечности

Количественные показатели долговечности восстанавливаемых изделий делятся на две группы.

1. Показатели, связанные со сроком службы изделия:

- срок службы – календарная продолжительность эксплуатации от начала эксплуатации объекта или её возобновление после ремонта до перехода в предельное состояние;

- средний срок службы – математическое ожидание срока службы;

- срок службы до первого капитального ремонта агрегата или узла – это продолжительность эксплуатации до ремонта, выполняемого для восстановления исправности и полного или близкого к полному восстановления ресурса изделия с заменой или восстановлением любых его частей, включая базовые;

- срок службы между капитальными ремонтами, зависящий преимущественно от качества ремонта, т.е. от того, в какой степени восстановлен их ресурс;

- суммарный срок службы – это календарная продолжительность работы технической системы от начала эксплуатации до выбраковки с учётом времени работы после ремонта;

- гамма-процентный срок службы – календарная продолжительность эксплуатации, в течение которой объект не достигнет предельного состояния с вероятностью γ, выраженной в процентах.

Показатели долговечности, выраженные в календарном времени работы, позволяют непосредственно использовать их в планировании сроков организации ремонтов, поставки запасных частей, сроков замены оборудования. Недостаток этих показателей заключается в том, что они не позволяют учитывать интенсивность использования оборудования.

2. Показатели, связанные с ресурсом изделия:

- ресурс – суммарная наработка объекта от начала его эксплуатации или её возобновление после ремонта до перехода в предельное состояние;

- средний ресурс – математическое ожидание ресурса; для технических систем в качестве критерия долговечности используют технический ресурс;

- назначенный ресурс – суммарная наработка, при достижении ко- торой эксплуатация объекта должна быть прекращена независимо от его технического состояния;

- гамма-процентный ресурс – суммарная наработка, в течение ко- торой объект не достигнет предельного состояния с заданной вероятностью γ, выраженной в процентах.

Единицы для измерения ресурса выбирают применительно к каждой отрасли и к каждому классу машин, агрегатов и конструкций отдельно. В качестве меры продолжительности эксплуатации может быть выбран любой неубывающий параметр, характеризующий продолжительность эксплуатации объекта (для самолётов и авиационных двигателей естественной мерой ресурса служит налёт в часах, для автомобилей – пробег в километрах, для прокатных станов – масса прокатанного металла в тоннах). Если наработку измерять числом производственных циклов, то ресурс будет принимать дискретные значения.